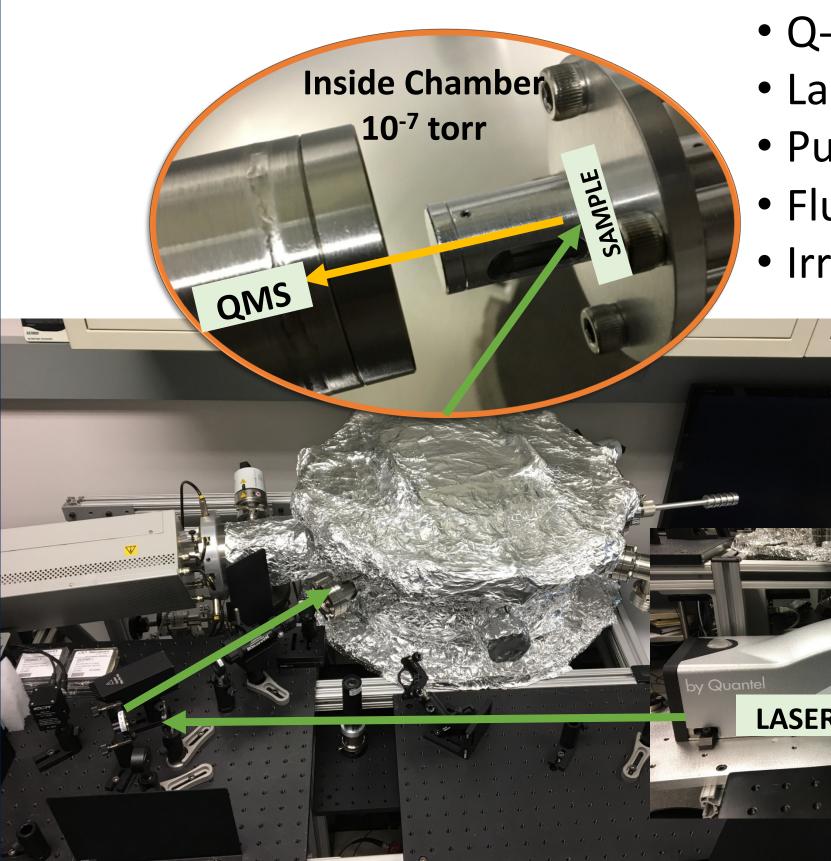


UNIVERSITY OF MARYLAND

Introduction and Background

Hydrogen cyanide (HCN) is a particularly important prebiotic material that facilitates a variety of chemical reactions for organic synthesis (Saladino et al., 2012). Previous studies have demonstrated the synthesis of CN⁻ or cyano radicals via energetic reactions such as photon irradiation, electric discharge, UV radiation, and hypervelocity impacts (HVIs), using simple precursor compounds NH_3 , CO, H_2O , N_2 , graphite (Ferus et al., 2017; Sugita and Schultz, 2009). Researchers have suggested that exogenous infall may not just *deliver* organic materials to planetary surfaces (Chyba and Sagan, 1992), but also *enable* molecular rearrangement (via ionization and recombination) and synthesis of essential prebiotic compounds in the post-impact plasma plume (Managadze, 2003; Farcy et al., 2017). This study aims to carefully reinvestigate, confirm, and quantify the synthesis of CN⁻ via HVIs in a vacuum (10⁻⁷ torr), in order to understand the effects of meteorite impacts on planetary bodies without substantial atmosphere, e.g., Ceres. We used high energy laser pulses (irradiance \geq 3×10^8 W/cm²) to simulate extreme impact plasma recombination conditions in the laboratory. Carbonates and N-salts (ammonium and nitrate) are chosen because they are common inorganic sources of N and C on planetary surfaces that could dominate contribution to synthetic yields.

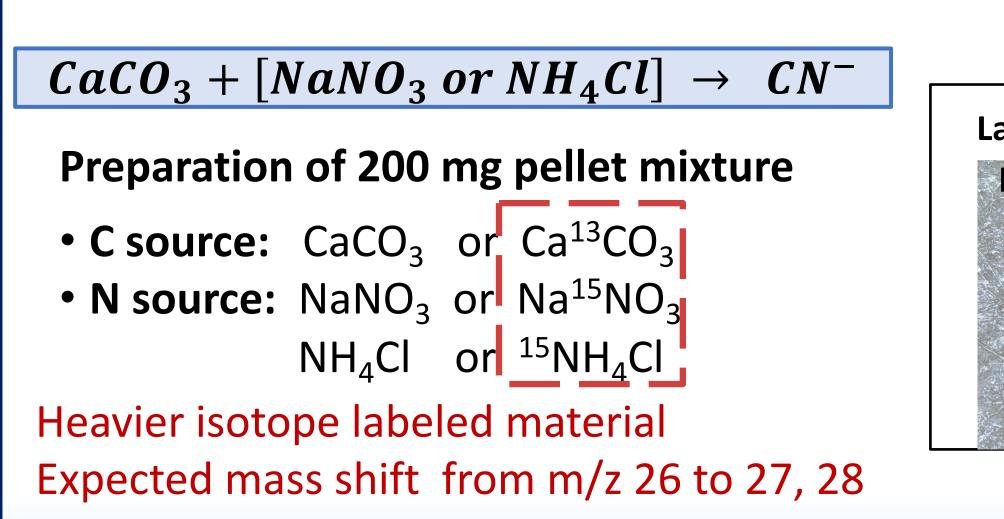

Objectives

1. Synthesis of CN⁻ using inorganic solids (carbonate and N-salts) via HVIs in vacuum (10⁻⁷ torr)

2. Investigate the effects of oxidation states of substrate (NO_3^- (N [+5]) and NH_4^+ (N [-3]) on yield of CN^-

3. Kinetic energy distribution of ions from laser ablation

Experimental Setup

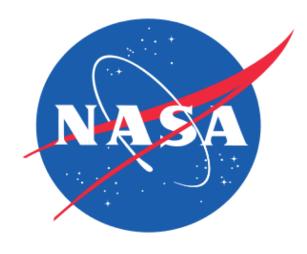


Pulsed laser ablation (PLA)

- Q-smart 850 Laser, 1064 nm
- Laser energy: \geq 30 mJ
- Pulse duration: 9 ns
- Fluence: > 2.8 J/cm^2
- Irradiance: $\geq 3 \times 10^8 \text{ W/cm}^2$

Hiden Quadrupole mass analyzer Measure mass to charge ratio (m/z) of ions

Intensity of signal is proportional to concentration of ions



Synthesis of Cyanide Ions (CN⁻) via Hypervelocity Impacts (HVIs)

NASA Goddard Space flight Center; University of Maryland, College Park

Ziqin "Grace" Ni, Ricardo Arevalo Jr., Benjamin Farcy, William B. Brinckerhoff, Xiang Li, Melissa Floyd, Andrej Grubisic, Mark Sutton, Alexander Pavlov, Veronica T. Pinnick

